Exercise 3.5.5
Let $A$, $B$, $C$, $D$ be sets. Show that $(A \times B) \cap (C \times D)=(A \cap C) \times (B \cap D)$.
Is it true that $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$?
Is it true that $(A \times B) \setminus (C \times D) = (A \setminus C) \times (B \setminus D)$?
Let's draw a picture to help clarify our thinking.
We can see visually that:
- $(A \times B) \cap (C \times D)=(A \cap C) \times (B \cap D)$.
- $(A \cup C) \times (B \cup D)$ contains $(c,b)$ where $c \in C, b \in B$, but $(A \times B) \cup (C \times D)$ does not.
- $(A \times B) \setminus (C \times D)$ contains $(a,e)$ where $a \in A, e \in B \cap D$, but $(A \setminus C) \times (B \setminus D)$ does not.
Show $(A \times B) \cap (C \times D)=(A \cap C) \times (B \cap D)$
Let's write out what $(A \times B) \cap (C \times D)$ means,
$$ (x,y) \in (A \times B) \cap (C \times D) \iff (x,y) \in \{(a,b): a \in A, b \in B \} \land (x,y) \in \{(c,d): c \in C, d \in D \}$$
We can see that $x$ must be in both $A$ and $C$, and $y$ must be in both $B$ and $D$.
Therefore, the RHS is equivalent to
$$(x,y) \in \{(s,t): s \in A \cap C, t \in B \cap D\}$$
Thus we have shown $(A \times B) \cap (C \times D)=(A \cap C) \times (B \cap D)$. $\square$
Is it true that $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$?
Let's write out what $(A \times B) \cup (C \times D)$ means,
$$ (x,y) \in (A \times B) \cup (C \times D) \iff (x,y) \in \{(a,b): a \in A, b \in B\} \lor (x,y) \in \{(c,d): c \in D, d \in D\}$$
Here we need to be careful about what this means. It means that
$$ (x \in A \land y \in B) \lor (x \in C \land y \in D) $$
Note in particular that $(c, b): c \in C, b \in B$ is not compatible with this, and is therefore not in the set $(A \times B) \cup (C \times D)$.
Let's consider the other set, $(A \cup C) \times (B \cup D)$. This means
$$ (x,y) \in (A \cup C) \times (B \cup D) \iff (x,y) \in \{(a,b): a \in A \lor C, b \in B \lor D\}$$
This time, the ordered pair $(c, b): c \in C, b \in B$ is in this set.
Therefore the two are not equivalent, $(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D)$. $\square$
A counter-example can illustrate this. Consider $A=\{1\}, B=\{2\}, C=\{3\}, D=\{4\}$.
Then $(A \times B) \cup (C \times D) = \{(1,2), (3,4)\}$, and $(A \cup C) \times (B \cup D) = \{(1,2), (1,4), (3,2), (3,4)\}$, a different set. The latter contains $(3,2)$, the former does not.
Is it true that $(A \times B) \setminus (C \times D) = (A \setminus C) \times (B \setminus D)$?
Let's write out what $(A \times B) \setminus (C \times D)$ means,
$$(x,y) \in (A \times B) \setminus (C \times D) \iff (x,y) \in \{ (a,b): a \in A, b \in B \} \land (x,y) \notin \{(c,d): c \in C, d \in D\}$$
Again, with some care, we establish what this means. (revision on negating statements)
$$ (x \in A \land y \in B) \land (x \notin C \lor y \notin D)$$
Consider the ordered pair $(a,e): a \in A, e \in B \cap D$. This satisfies the above condition, so is a member of the set $(A \times B) \setminus (C \times D)$
Now let's consider the other set, $(A \setminus C) \times (B \setminus D)$. This means
$$ (x,y) \in (A \setminus C) \times (B \setminus D) \iff (x,y) \in \{(a,b): a \in A \land a \notin C, b \in B \land b \notin D\} $$
That is, $x \in A \land x \notin C \land y \in B \land y \notin D$.
The ordered pair $(a,e): a \in A, e \in B \cap D$ is not in this set.
Therefore the two are not equivalent, $(A \times B) \setminus (C \times D) \neq (A \setminus C) \times (B \setminus D)$. $\square$
Again, a counter-example will illustrate this. Consider $A=\{1\}, B=\{2,3\}, C=\{4\}, D=\{3,5\}$.
Then, $(A \times B) \setminus (C \times D) = \{(1,2), (1,3)\}$, and $(A \setminus C) \times (B \setminus D) = \{(1,2)\}$, a different set. The former contains $\{1,3\}$, the latter does not.
No comments:
Post a Comment