Sunday, 29 October 2023

Tao Analysis I - 3.1.6

Exercise 3.1.6

Prove Proposition 3.1.27. (Hint: one can use some of these claims to prove others. Some of the claims have also appeared previously in Lemma 3.1.12.)

Let's write out Proposition 3.1.27.

Proposition 3.1.27 (Sets form a boolean algebra). Let $A$, $B$, $C$ be sets, and let $X$ be a set containing $A$, $B$, $C$ as subsets.

(a) (Minimal element) We have $A\cup \emptyset = A$ and $A \cap \emptyset = \emptyset$.

(b) (Maximal element)We have $A \cup X = X$ and $A \cap X=A$.

(c) (Identity) We have $A \cap A=A$ and $A \cup A=A$.

(d) (Commutativity) We have $A \cup B=B \cup A$ and $A \cap B=B \cap A$.

(e) (Associativity) We have $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$.

(f) (Distributivity) We have $A \cap (B \cup C)=(A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C)=(A \cup B) \cap (A \cup C)$.

(g) (Partition) We have $A \cup (X \setminus A) = X$ and $A \cap (X \setminus A) = \emptyset$.

(h) (De Morgan laws) We have $X \setminus (A \cup B)=(X \setminus A) \cap (X \setminus B)$ and $X \setminus (A \cap B)=(X \setminus A) \cup (X \setminus B)$.


Let's prove each in turn.


(a) Minimal Element

We need to show $A\cup \emptyset = A$ and $A \cap \emptyset = \emptyset$.


Let's start with the first and use the definition of a pairwise union, Axiom 3.5.

$$x \in (A \cup \emptyset) \iff (x \in A) \lor (x \in \emptyset)$$

The definition of an empty set, Axiom 3.5, tells us that an empty set has no members. That is, $x \in \emptyset$ is never true. So the above simplifies to

$$x \in (A\cup \emptyset) \iff (x \in A)$$

Thus $A\cup \emptyset = A$. $\square$


Now let's consider $A \cap \emptyset = \emptyset$ and use the definition of intersection, Definition 3.1.22.

$$x \in (A \cap \emptyset) \iff (x \in A) \land (x \in \emptyset)$$

The definition of an empty set, Axiom 3.5, tell us that an empty set has no members. So the expression $(x \in A) \land (x \in \emptyset)$ is always false. That is, $x \in (A\cap \emptyset)$ is never true. 

Thus $A\cap \emptyset = \emptyset$. $\square$


(b) Maximal Element

We  need to show $A \cup X = X$ and $A \cap X=A$.


We have already shown in Exercise 3.1.5 that $A \subseteq B$, $A \cup B=B$, $A \cap B=A$ are logically equivalent. Here we have $A \subseteq X$ and so $A \cup X=X$, $A \cap X=A$ are true. $\square$


(c) Identity

We need to show $A \cap A=A$ and $A \cup A=A$.


Let's use the definition of a pairwise union, Axiom 3.5, and equate $A = B$.

$$\begin{align}x \in (A \cup A) &\iff (x \in A) \lor (x \in A) \\ \\ & \iff (x \in A) \end{align}$$

This gives us $A \cap A=A$. $\square$


Now let's use the definition of intersection, Definition 3.1.22, and equate $A=B$.

$$\begin{align}x \in (A \cap A) &\iff (x \in A) \land (x \in A) \\ \\ & \iff (x \in A) \end{align}$$

This gives us $A \cup A=A$. $\square$


(d) Commutativity

We need to show $A \cup B=B \cup A$ and $A \cap B=B \cap A$.


Let's use the definition of a pairwise union, Axiom 3.5.

$$\begin{align}x \in (A \cup B) &\iff (x \in A) \lor (x \in B) \\ \\ & \iff (x \in B) \lor (x \in A) \end{align}$$

The second line is justified because logical disjunction is commutative.

So we have  $A \cup B=B \cup A$. $\square$


Now let's use the definition of intersection, Definition 3.1.22.

$$\begin{align}x \in (A \cup B) &\iff (x \in A) \land (x \in B) \\ \\ & \iff (x \in B) \land (x \in A)  \end{align}$$

The second line is justified because logical conjunction is commutative.

So we have  $A \cap B=B \cap A$. $\square$


(e) Associativity

We need to show $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$.


The first identity that union is associative is Lemma 3.1.12 proven in the text. 


Now we turn to the second identity $(A \cap B) \cap C = A \cap (B \cap C)$. Using Definition 3.1.22 of intersection,

$$x \in (A \cap B) \cap C \iff (x \in A \cap B) \land (x \in C)$$

This gives us $x \in C$.

Considering $(A \cap B)$,

$$x \in (A \cap B) \iff (x \in A ) \land (x \in B)$$

This gives us $x \in A$ and $x \in B$.

So in summary we have that all $x \in A$,  $x \in B$ and $x \in C$ are true.

Using $x \in B$ and $x \in C$, and Definition 3.1.22 of intersection,

$$(x \in B) \land (x \in C) \iff x \in (B \cap C)$$

And using $x \in A$,

$$(x \in A) \land (x \in B \cap C) \iff x \in A \cap (B\cap C)$$

That is, $(A \cap B) \cap C = A \cap (B \cap C)$. $\square$


(f) Distributivity

We need to show $A \cap (B \cup C)=(A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C)=(A \cup B) \cap (A \cup C)$.


Let's start with the first identity, and use Definition 3.1.22 of intersection,

$$x \in (A \cap (B \cup C)) \iff (x \in A) \land (x \in (B \cup C))$$

This gives us $x \in A$ as true, as well as $x \in (B \cup C)$.

Consider $(B \cup C)$ and use the definition of a pairwise union, Axiom 3.5,

$$x \in (B \cup C) \iff (x \in B) \lor (x \in C)$$

This gives us two combinations, at least one of which must be true

  • $(x \in A) \land (x \in B)$
  • $(x \in A) \land (x \in C)$

"At least one of which must be true" means a disjunction between the two statements.

$$x \in (A \cap (B \cup C)) \iff (x \in A \land x\in B) \lor (x \in A \land x\in C)$$

This proves the first identity $A \cap (B \cup C)=(A \cap B) \cup (A \cap C)$. $\square$.


Now let's consider the RHS of the second identity, and use Definition 3.1.22 of intersection,

$$x \in ((A \cup B) \cap (A \cup C)) \iff (x \in (A \cup B)) \land (x \in (A \cup C))$$

Applying the definition of union Axiom 3.5, we have two combinations, both of which must be true

  • $x \in A \lor x \in B$
  • $x \in A \lor x \in C$

If $x \in A$ then both of these statements are true. If $x \not \in A$, then both statements are only true if $x \in B$ and $x \in C$.  That is, $(x \in A) \lor ((x \in B) \land (x \in C))$.

So we have shown, $A \cup (B \cap C)=(A \cup B) \cap (A \cup C)$. $\square$


(g) Partition

We need to show $A \cup (X \setminus A) = X$ and $A \cap (X \setminus A) = \emptyset$.


Let's start with the first identity $A \cup (X \setminus A) = X$, and use Axiom 3.5 which defines union,

$$x \in (A \cup (X \setminus A)) \iff (x \in A) \lor (x \in X \setminus A)$$

Since $A \subseteq X$, we have $x \in A \implies x \in X$, which gives us

$$\begin{align}x \in (A \cup (X \setminus A)) &\implies (x \in X) \lor (x \in X \setminus A) \\ \\ &\implies x \in X\end{align}$$

The last step is true because $x \in X$ is true, or $x \in X \setminus A$ is true, and in both cases $x \in X$.

So we have $A \cup (X \setminus A) \subseteq X$. We now need to show $X \subseteq A \cup (X \setminus A)$.

Consider $x \in X$. Since $A \subseteq X$, we have $(x \in A) \lor (x \not \in A)$. The case $(x \not \in A)$ combined with $x \in X$, which is true by hypothesis, gives us $(x \in X \setminus A)$. So we have

$$x \in X \implies (x \in A) \lor (x \in X \setminus A)$$

That is, $X \subseteq A \cup (X \setminus A)$. 

Having shown both $A \cup (X \setminus A) \subseteq X$, and  $X \subseteq A \cup (X \setminus A)$, we can conclude $A \cup (X \setminus A) = X$. $\square$


Now let's consider the second identity $A \cap (X \setminus A) = \emptyset$, and use Definition 3.1.22 of intersection,

$$x \in (A \cap (X \setminus A)) \iff (x \in A) \land (x \in X \setminus A)$$

So both $(x \in A)$ and $(x \in X \setminus A)$ must be true. However, Definition 3.1.26 for set difference tells us that $(x \in X \setminus A)$ means $(x \not \in A)$. The only solution to this apparent contradiction is if $x \in \emptyset$. 

So we have $A \cap (X \setminus A) = \emptyset$. $\square$


(h) De Morgan's Laws

We need to show $X \setminus (A \cup B)=(X \setminus A) \cap (X \setminus B)$ and $X \setminus (A \cap B)=(X \setminus A) \cup (X \setminus B)$.


Let's start with the first identity $X \setminus (A \cup B)=(X \setminus A) \cap (X \setminus B)$, and use the Definition 3.1.26 for set difference.

$$x \in (X \setminus (A \cup B)) \iff (x \in X) \land (x \not \in (A \cup B))$$

Both statements $(x \in X)$ and $(x \not \in (A \cup B))$ must be true. Let's consider the second statement.

$$\begin{align}(x \not \in (A \cup B)) &\iff \neg((x \in A) \lor (x \in B)) \\ &\iff (x \not \in A) \land (x \not \in B)\end{align}$$

This is because $\neg(P \lor Q) \equiv (\neg P) \land (\neg Q)$.

We can write these as two combined statements, both of which must be true.

  • $(x \in X) \land (x \not \in A)$
  • $(x \in X) \land (x \not \in B)$

Which is equivalent to $(X \setminus A) \cap (X \setminus B)$.

So we have shown $X \setminus (A \cup B)=(X \setminus A) \cap (X \setminus B)$. $\square$


Now let's consider the second identity $X \setminus (A \cap B)=(X \setminus A) \cup (X \setminus B)$, and use the Definition 3.1.26 for set difference.

$$x \in (X \setminus (A \cap B)) \iff (x \in X) \land (x \not \in (A \cap B))$$

Both statements $(x \in X)$ and $(x \not \in (A \cap B))$ must be true. Let's consider the second statement.

$$\begin{align}(x \not \in (A \cap B)) &\iff \neg((x \in A) \land (x \in B)) \\ &\iff (x \not \in A) \lor (x \not \in B)\end{align}$$

This is because $\neg(P \land Q) \equiv (\neg P) \lor (\neg Q)$.

We can write these as two combined statements, at least one of which must be true.

  • $(x \in X) \land (x \not \in A)$
  • $(x \in X) \land (x \not \in B)$

Which is equivalent to $(X \setminus A) \cup (X \setminus B)$.

So we have shown $X \setminus (A \cap B)=(X \setminus A) \cup (X \setminus B)$. $\square$

No comments:

Post a Comment