Saturday, 30 September 2023

Tao Analysis I - 2.3.4

Exercise 2.3.4

Prove the identity (a+b)2=a2+2ab+b2 for all natural numbers a, b.


We want to show the following.

((a++)+b)2=(a++)2+(2×(a++)×b)+b2

Let's expand the LHS using the Definition 2.3.11 of exponentiation that x2=x1×x,  and the distributive law of Proposition 2.3.4 twice,

((a++)+b)2=((a++)+b)×((a++)+b)=[((a++)+b)×(a++)]+[((a++)+b)×b)]=(a++)2+(b×(a++))+((a++)×b)+b2

We now use commutivity of multiplication of Lemma 2.3.2,

((a++)+b)2=(a++)2+(b×(a++))+((a++)×b)+b2=(a++)2+(b×(a++))+(b×(a++))+b2=(a++)2+(2×(a++)×b)+b2

The last step uses Definition 2.3.1 that 2×m=0+m+m.

The final expression is the RHS, and so we have shown that for all natural numbers (a+b)2=a2+2ab+b2.

No comments:

Post a Comment